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Abstract

Non-linear flexural waves in thin plates or layers have been analyzed in this paper. The equation of
motion of the plate is derived assuming that the motion is antisymmetric about the mid-plane of the plate
and that the plate is thin. The plate is considered to be elastic. The Von Karman non-linear strains and
Landau elastic constants have been used to model geometric and material non-linearities, respectively. An
asymptotic analysis of wave motion is presented using the method of multiple scales. Evolution equations
are derived for small amplitude traveling flexural elastic waves. Numerical results show waveform
distortion, amplitude amplification, and harmonic generation.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Recently, non-destructive evaluation and material characterization using non-linear waves have
received attention because of potential industrial applications. Material and geometric non-
linearities are often necessary to consider for modelling structures when the excitation amplitude
is large. These non-linearities affect the elastic wave dispersion and attenuation. Experimentally,
material and geometric non-linearities have been observed in waveform distortion, wave-
amplitude amplification and harmonic generation [1,2]. In order to model these effects, a non-
linear quantitative analysis must be developed. In linear wave theory, guided modes in a plate at a
fixed frequency are linearly independent, whereas material and geometric non-linearities induce
interaction of the modes. This is exhibited by harmonic generation and the subject of this
investigation. Early work on non-linear wave interaction was by G .oldberg [3], who studied bulk
wave interaction in elastic solids and harmonic generation. An asymptotic solution using a regular
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expansion has been used by Jones and Kobett [4]. This captured only quadratic harmonic
generation due to quadratic non-linearity. Asymptotic solutions to non-linear equations have also
been obtained using perturbation methods [5,6]. The method of multiple scales is an efficient tool
for obtaining solutions to non-linear equations. This technique is based upon a perturbation of
the linear solution. The solvability conditions and the necessary evolution equations for the
amplitude dependence on the multiple space and time scales [7–10] are easily obtained. This
method has been employed previously to study non-linear surface waves by Kalyanasundaram
[11,12], Lardner [13–16], and Harvey and Tupholme [17,18]. In their work, by solving the
evolution equations, they conclude that the fundamental harmonic amplitude grows initially
and then remains bounded. It is found that wave coupling causes waveform distortion and
harmonic generation. Non-linear surface waves are also studied using the averaging of the
Hamiltonian by Zabolotskaya [19] and by Hamilton et al. [20] for isotropic and cubic materials.
In their work, the evolution equations governing wave amplitude were derived using Fourier
series expansion. Also, Fu and Hill [21] employed the method of multiple scales to study weakly
dispersive surface waves in a coated half-space. It appears that non-linear guided waves in thin
plates have not received much attention. A relevant work on non-linear guided waves in elastic
isotropic plates is by Fu [22]. He found a dramatic influence of material and geometric
non-linearities on the amplitude of weakly dispersive traveling waves in plates. Non-linear waves
in elastic bars were studied by Kovriguine and Potapov [23], and Kovriguine [24]. They used the
classical beam theory to study non-linear interactions between longitudinal and flexural waves in
rectangular bars.
In this work, non-linear flexural waves in infinite plates are modelled using the first order

Mindlin plate theory. Material and geometric non-linearities are included using the third order
elastic constants and Von Karman non-linear strains [25], respectively. The method of multiple
scales is used to derive the amplitude evolution equations of self-modulated non-linear flexural
waves.

2. Mathematical formulation

2.1. Equations of motion

For thin plates, the displacement components for antisymmetric motion about the mid-plane
can be approximated as

*uðx; y; z; tÞ ¼ zcðx; y; tÞ;

*vðx; y; z; tÞ ¼ zfðx; y; tÞ;

*wðx; y; z; tÞ ¼ wðx; y; tÞ; ð1Þ

where w is the displacement component along the z-axis, which is normal to the mid-plane, and
(f;c) are the rotations of the normal to the mid-plane about x and y axes, respectively. For large
deformation, the Lagrangian representation of the strain–displacement relation is

Eij ¼
1

2

q *ui

qxj

þ
q *uj

qxi

þ
q *uk

qxi

q *uk

qxj

� �
: ð2Þ

O.M. Mukdadi, S.K. Datta / Journal of Sound and Vibration 263 (2003) 1031–10461032



Adopting Von Karman non-linear strain components [26], i.e., quadratic in w and linear in f
and c yields,

Exx ¼ zc;x þ w2
;x=2; Eyz ¼ k1ðfþ w;yÞ=2;

Eyy ¼ zf;y þ w2
;y=2; Ezx ¼ k2ðcþ wxÞ=2;

Ezz ¼ �bðExx þ EyyÞ; Exy ¼ ðzðc;y þ f;xÞ þ w;xw;yÞÞ=2; ð3Þ

where k1 ¼ k2 ¼ p=
ffiffiffiffiffi
12

p
; are the shear correction factors, and b ¼ l=ð2mþ lÞ is introduced to

account for plane stress condition. Assuming that the material is isotropic and elastic, the
constitutive equation for the Cauchy stress tensor is [27]

sij ¼ lEkkdij þ 2mEij þ dijðCEkkEll þ BEklElkÞ þ 2BEkkEij þ AEjkEki; ð4Þ

where A;B; and C are the third order elastic constants. The corresponding first Piola–Kirchhoff
stress tensor can be expressed as

Sij ¼ dik þ
qui

qxk

� �
skj : ð5Þ

In the absence of any body forces, the equations of motion are

qSxx

qx
þ

qSxy

qy
þ

qSxz

qz
¼ r

q2 *u
qt2

;

qSyx

qx
þ

qSyy

qy
þ
qSyz

qz
¼ r

q2 *v
qt2

;

qSzx

qx
þ

qSzy

qy
þ

qSzz

qz
¼ r

q2 *w
qt2

: ð6Þ

In order to model the antisymmetric motion about the mid-plane of the plate, the third
equation and z-times the first two equations are integrated with respect to z from �h to þh giving
the following plate equations of motion:

Mxx;x þ Mxy;y � Qxz ¼
2rh3

3
.c;

Myx;x þ Myy;y � Qyz ¼
2rh3

3
.f;

Qzx;x þ Qzy;y ¼ 2rh .w; ð7Þ

where

ðQxz;Qyz;Qzx;QzyÞ ¼
Z þh

�h

ðSxz;Syz;Szx;SzyÞ dz;

ðMxx;Myy;Mxy;MyxÞ ¼
Z þh

�h

zðSxx;Syy;Sxy;SyxÞ dz:
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Assuming a plane wave propagating along the x-axis of the thin plate, i.e., q=qy ¼ 0; the
equations of motion may be simplified as

2h3

3
ð2mþ %lÞc;xx � 2hk2

2mðcþ w;xÞ þ f NL
1 ¼

2rh3

3
.c;

2h3

3
mf;xx � 2hk2

1mfþ f NL
2 ¼

2rh3

3
.f;

2hk2
2mðc;x þ w;xxÞ þ f NL

3 ¼ 2rh .w; ð8Þ

where the subscript ðÞ;x represents q=qx; and the dot stands for q=qt: The non-linear terms f NL
i are

f NL
1 ¼ a1ðw2

;xc;xÞ;x � a2cw2
;x � a3w

3
;x;

f NL
2 ¼ b1ðw2

;xf;xÞ;x � b2fw2
;x;

f NL
3 ¼ ðc1w3

;x þ c2cw2
;xÞ;x: ð9Þ

Here, the coefficients ai; bi; and ci are functions of material properties and plate thickness:

a1 ¼
h3

3
ð%lþ 2mþ 5A=2þ Bð7� 4bþ 2b2Þ þ 2Cð1� bÞ2Þ;

a2 ¼ hðA=2þ BÞð2� bÞ; a3 ¼ hð1� bÞðA=2þ BÞ;

b1 ¼
h3

3
ð%lþ 2mþ A þ Bð2� bÞÞ; b2 ¼ h

A

2
ð1� bÞ þ Bð2� bÞ

� �
;

c1 ¼ hð%lþ 2mþ ðA=2þ BÞð2� bÞÞ; c2 ¼ hð3� bÞðA=2þ BÞ;

b ¼
l

2mþ l
:

Note that %l ¼ lð1� bÞ:

2.2. Normalization

In order to carry out a perturbation analysis, these equations are cast in a non-dimensional
form. For this purpose, the following parameters are introduced;

#x ¼
x

h
; #t ¼

t

ts

; #c ¼ c; #f ¼ f; #w ¼
w

h
;

C2
s ¼

m
r
; C2

d ¼
%lþ 2m

r
; ts ¼

h

Cs

; K ¼ kh; O ¼
oh

Cs

:

Here, #x and #t are the non-dimensional space and time variables. #c; #f; and #w are the non-
dimensional components of the rotations around x- and y-axis, and the displacement along z-axis,
respectively. Cd and Cs are, respectively, the dilatational and shear wave speeds, ts the shear wave
travel time through the thickness, K and O the non-dimensional wavenumber and circular wave

O.M. Mukdadi, S.K. Datta / Journal of Sound and Vibration 263 (2003) 1031–10461034



frequency, respectively. The resulting non-dimensional form of Eq. (8) is

C2
d

C2
s

#c00 � 3k2
2ð #cþ #w0Þ þ #f NL

1 ¼ .#c;

#f00 � 3k2
1
#fþ #f NL

2 ¼ .#f;

k2
2ð #c

0 þ #w00Þ þ #f NL
3 ¼ .#w; ð10Þ

where the prime represents q=q #x and the dot q=q#t: The non-linear terms #f NL
i are

#f NL
1 ¼ #a1ð #w 02 #c0Þ0 � #a2 #c #w 02 � #a3 #w

03;

#f NL
2 ¼ #b1ð #w 02 #f0Þ0 � #b2 #f #w 02;

#f NL
3 ¼ ð#c1 #w 03 þ #c2 #c #w 02Þ0; ð11Þ

which include non-dimensional parameters as follows:

#a1 ¼
1

2m
ð%lþ 2mþ 5A=2þ Bð7� 4bþ 2b2Þ þ 2Cð1� bÞ2Þ;

#a2 ¼
3

2m
ðA=2þ BÞð2� bÞ; #a3 ¼

3

2m
ð1� bÞðA=2þ BÞ;

#b1 ¼
1

2m
ð%lþ 2mþ A þ Bð2� bÞÞ; #b2 ¼

3

2m
A

2
ð1� bÞ þ Bð2� bÞ

� �
;

#c1 ¼
1

2m
ð%lþ 2mþ ðA=2þ BÞð2� bÞÞ; #c2 ¼

1

2m
ð3� bÞðA=2þ BÞ:

Eqs. (10) represent the non-dimensional form of the antisymmetric wave motion. These
equations are coupled and the cubic non-linearity makes it difficult to solve them analytically.
Here, the method of multiple scales is used to solve the equations.

2.3. The method of multiple scales

A perturbation solution is sought around the linear solution using the method of multiple
scales. This leads to equations that depict the non-linearity influence on the wave amplitude,
wavenumber and frequency. The independent variables are expanded as [5,6]

Tn ¼ en #t; Xn ¼ en #x; ð12Þ

where Tn and Xn are the slow time and space scales, e is a small expansion parameter ðo1Þ and
measures the order of the non-linearity. In order to capture the cubic non-linearity of the flexural
wave equations given by Eq. (10), one represents the derivatives with respect to multiple space and
time variables as

q
q#t

¼
q

qT0
þ e2

q
qT2

þy;

q
q #x

¼
q

qX0
þ e2

q
qX2

þy : ð13Þ
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Eqs. (13) are the derivative expansions. Similarly, expanding the dependent variables in the
following form will result in solutions of different orders:

#c ¼ ec1 þ e3c3 þy;

#f ¼ ef1 þ e3f3 þy;

#w ¼ ew1 þ e3w3 þy : ð14Þ

Here, the first terms in the expansion correspond to the linear solution, and the subsequent
terms are the corrections. Substituting Eqs. (13) and (14) in the non-linear system (10), yields the
following systems:

OðeÞ :
C2

d

C2
s

q2c1

qX 2
0

� 3k2
2 c1 þ

qw1

qX0

� �
�

q2c1

qT2
0

¼ 0;

q2f1

qX 2
0

� 3k2
1f1 �

q2f1

qT2
0

¼ 0;

k2
2

qc1

qX0
þ
q2w1

qX 2
0

� �
�

q2w1

qT2
0

¼ 0; ð15Þ

and

Oðe3Þ :
C2

d

C2
s

q2c3

qX 2
0

� 3k2
2 c3 þ

qw3

qX0

� �
�

q2c3

qT2
0

¼ �2
C2

d

C2
s

q2c1

qX0qX2
þ 2k2

2

qw1

qX2
� #a1

q
qX0

qc1

qX0

qw1

qX0

� �2
 !

þ #a2c1

qw1

qX0

� �2

þ #a3
qw1

qX0

� �3

þ2
q2c1

qT0qT2
;

q2f3

qX 2
0

� 3k2
1f3 �

q2f3

qT2
0

¼ 2
q2f1

qX0qX2
� #b1

q
qX0

qf1

qX0

qw1

qX0

� �2
 !

þ #b2f1

qw1

qX0

� �2

þ2
q2f1

qT0qT2
;

k2
2

qc3

qX0
þ

q2w3

qX 2
0

� �
�

q2w3

qT2
0

¼ � k2
2

qc1

qX2
þ

q2w1

qX0qX2

� �

�
q

qX0

#c1
qw1

qX0

� �3

þ#c2c1

qw1

qX0

� �2
 !

þ 2
q2w1

qT0qT2
: ð16Þ

The first order system ðOðeÞÞ represents the linear equation of antisymmetric wave motion in the
plate. The third order system ðOðe3ÞÞ represents the next order correction to the linear system.
Note that the right-hand side of Eq. (16) is known from Eq. (15) and will act as a forcing term
representing the non-linear interaction. The homogeneous solution to this higher order system
will have the same form as the linear solution. Here, one is concerned with the particular solution
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of the higher order system. The monoharmonic solution of Eq. (15) for the first flexural mode may
be written as

c1

f1

w1

0
B@

1
CA ¼

v1ðX2;T2Þ

v2ðX2;T2Þ

v3ðX2;T2Þ

0
B@

1
CAeiðK0X0�O0T0Þ þ c:c: ð17Þ

Clearly, the coefficients are functions of the slower variables X2 and T2: Substituting Eq. (17) in
the right-hand side of Eq. (16) yields a non-homogeneous system having a particular solution,
which is the correction solution due to non-linearity. Therefore, the presence of the
monoharmonic force in the right-hand side will give secular terms, which will grow without
bound. These terms are the coefficients of eiðK0X0�O0T0Þ on the right-hand side of Eq. (16). In order
to satisfy the solvability condition, it is necessary to equate the secular terms to zero. Thus,
Eq. (16) may be reduced to

C2
d

C2
s

q2c3

qX 2
0

� 3k2
2 c3 þ

qw3

qX0

� �
�

q2c3

qT2
0

¼ �ð3 #a1K4
0v23v1 þ #a2K

2
0v23v1 þ i #a3K

3
0v33Þe

3iðK0X0�O0T0Þ;

q2f3

qX 2
0

� 3k2
1f3 �

q2f3

qT2
0

¼ �ð3 #b1K4
0v23v2 þ #b2K

2
0v23v2Þe

3iðK0X0�O0T0Þ;

k2
2

qc3

qX0
þ
q2w3

qX 2
0

� �
�

q2w3

qT2
0

¼ �ð3#c1K4
0v33 � 3i#c2K

3
0v23v1Þe

3iðK0X0�O0T0Þ; ð18Þ

and the equations obtained by setting the secular terms to zero,

� 2iK0
C2

d

C2
s

qv1

qX2
þ 3k2

2

qv3

qX2
þ #a1K

4
0 ð2jv3j

2v1 þ v23 %v1Þ

þ #a2K
2
0 ð2jv3j

2v1 � v23 %v1Þ þ 3iK3
0 #a3jv3j

2v3 � 2iO0
qv1

qT2
¼ 0;

� 2iK0
qv2

qX2
þ #b1K

4
0 ð2jv3j

2v2 þ v23 %v2Þ

þ #b2K
2
0 ð2jv3j

2v2 � v23 %v2Þ � 2iO0
qv2

qT2
¼ 0;

� k2
2

qv1

qX2
þ 2iK0

qv3

qX2

� �
þ 3#c1K

4
0 jv3j

2v3

� i#c2K
3
0 ð2jv3j

2v1 � v23 %v1Þ � 2iO0
qv3

qT2
¼ 0: ð19Þ

Non-homogeneous system (18) is the correction system describing the harmonic generation.
Furthermore, the secular equations (19) are the amplitude evolution equations showing the wave
amplitude dependence on the slow variables X2 and T2: The general solution of Eq. (18) may be
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written in the form:

c3

f3

w3

0
B@

1
CA ¼

q1ðX2;T2Þ

q2ðX2;T2Þ

q3ðX2;T2Þ

0
B@

1
CAe3iðK0X0�O0T0Þ þ c:c; ð20Þ

where ðq1 q2 q3Þ
T can be obtained by solving the following algebraic equation:

9
C2

d

C2
s

K2
0 þ 3k2

2 � 9O2
0

� �
0 9ik2

2K0

0 ð9K2
0 þ 3k2

2 � 9O2
0Þ 0

�3ik2
2K0 0 ð9k2

2K2
0 � 9O2

0Þ

2
66664

3
77775

q1

q2

q3

0
B@

1
CA

¼ K2
0v23

ð2 #a1K2
0v1 þ #a2v1 þ i #a3K0v3Þ

ð3 #b1K2
0v2 þ #b2v2Þ

ð#c1K2
0v3 � 3i#c2K0v1Þ

0
B@

1
CA: ð21Þ

Solving for qn in terms of vn will determine the total solution, which can be written in the
following non-dimensional form as

#cð #x; #t Þ
#fð #x; #t Þ

#wð #x; #t Þ

0
B@

1
CA ¼ e

v1ðe2 #x; e2 #xÞ

v2ðe2 #x; e2 #xÞ

v3ðe2 #x; e2 #xÞ

0
B@

1
CAeiðK0 #x�O0 #t Þ

þ e3
q1ðe2 #x; e2 #t Þ

q2ðe2 #x; e2 #t Þ

q3ðe2 #x; e2 #t Þ

0
B@

1
CAe3iðK0 #x�O0 #t Þ: ð22Þ

Eq. (22) shows the non-linearity influence on the flexural wave motion. The evolution equations
have to be solved numerically to study the non-linearity effects.

3. Numerical results and discussion

Eqs. (19)–(21) depend on the third order elastic constants as well as on the wavenumber. The bi-
quadratic dependence on the wavenumber implies that non-linearity will be more significant for
high-frequency wave propagation, i.e., K0 > 1: For low-frequency measurements of flexural
waves, the non-linearity can be negligible and the correction solution asymptotically decays and
the wave amplitudes vn remain constant. Here, Eqs. (19) are solved numerically using the method
of lines, i.e., solving for space at each time step. Explicit finite difference scheme has been used to
solve the evolution equations. In this work a thin plate of aluminum is considered with Lam!e
constants m ¼ 27 GPa and l ¼ 57 GPa; and mass density r ¼ 2727 kg=m3: Landau third order
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elastic constants are A ¼ �320 GPa; B ¼ �200 GPa; and C ¼ �190 GPa: It is clearly notice-
able that the Landau third order elastic constants are generally of larger order of magnitude
than the Lam!e constants. For aluminum material, the ratio of the Landau third order
elastic constants to the Lam!e constant m is of order 10. This suggests that the non-linearity
in the constitutive equation (effects of higher-order elastic constants) will dominate over the
geometric non-linearity. Table 1 lists the values of the non-linear coefficients due to geometric
and/or material non-linearity. Considering geometric non-linearity alone, the non-linear
coefficients are positive and small in magnitude compared to those arising from material non-
linearity.
Numerical results are presented in Fig. 1 considering both material and geometric non-

linearities for monoharmonic wave amplitude vn: They show the dependence of the wave
amplitude on the slow variables ðX2;T2Þ at a non-dimensional wavenumber of K0 ¼ 1 and non-
linear parameter e ¼ 0:05: Plots of real and imaginary parts of the tri-harmonic correction

Table 1

Non-linear coefficients

Non-linearity #a1 #a2 #a3 #b1 #b2 #c1 #c2

Geometric 1.51 0 0 1.51 0 1.51 0

Material �36.75 �29.73 �9.73 �11.43 �20.84 �9.91 �16.58
Both �35.24 �29.73 �9.73 �9.92 �20.84 �8.40 �16.58

Fig. 1. Real and imaginary parts of the monoharmonic wave amplitude components calculated using Eq. (19) for non-

dimensional wavenumber K0 ¼ 1:0 and non-linearity parameter e ¼ 0:05:
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amplitude qn are presented in Fig. 2. For flexural wave in isotropic material, transverse
components v2 ¼ q2 ¼ 0: Even for weak non-linearity, i.e., e51; the non-linear effects can
be clearly seen in the variation of the coefficients of both the monoharmonic and tri-harmonic
terms. It is observed that the space and time dependence is quite different for x � 3to0 than
when x � 3t > 0: The characteristic line Eðx � 3tÞ demarcates the slow-time oscillations to
soliton-like behavior of the wave amplitude. This phenomenon is caused by the accumulation of
the effects of material and geometric non-linearities on the amplitude over distance and time.
Notice that the ratio of the correction solution to linear solution is of Oðe2Þ: Both slowly varying
wave amplitudes, i.e., ðvi; qiÞ; determine the wave profile distortion and harmonic generation of the
primary wave.
To obtain further understanding of the non-linear flexural wave behavior in time, both real and

imaginary parts of the normal displacement and rotation components ð #w; #cÞ are plotted in Figs. 3
and 4 for different observation points ð #x ¼ 0; 160; 320; 480; 640; and 800Þ: At #x ¼ 0 a flexural
wave train is seen to propagate in the thin plate with linear wave behavior. For #x > 0 the
transverse displacement component #w shows linear behavior for small time but its amplitude is
seen to decrease as t increases. Very small amplitude modulation (beating) is seen at small time for
#x > 0: Fig. 4 shows that the rotational component #c has strikingly different behavior when #x > 0:
#c component shows pronounced beating for #to #x=3: Another feature is that solitons start to
appear at #t > #x=3 and wave amplification is clearly observed in the real and imaginary parts of #c
at large times.
Fig. 5 shows the real parts of wave components ( #w and #c) calculated at #x ¼ 200 for different

values of non-linear parameter ðe ¼ 0:01; 0:05; 0:07Þ: It is clearly seen that for very weak

Fig. 2. Real and imaginary parts of the tri-harmonic wave amplitude components calculated using Eq. (21) for non-

dimensional wavenumber K0 ¼ 1:0 and non-linearity parameter e ¼ 0:05:
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non-linearity ðe ¼ 0:01Þ; one can neglect the non-linear effects on the wave motion. On the other
hand, for higher non-linearity ðe ¼ 0:05; 0:07Þ; it is seen that #w decreases in amplitude as #t
increases. It decreases more as e increases. Increasing e has much more dramatic effect on the
rotation #c: This is consistent with the behavior shown in Fig. 4. Initially, there is the linear
dispersive behavior (beating), which is followed by a slowly varying time dependence. The
amplitude reaches a higher steady value at long time.

Fig. 3. Real and imaginary parts of #w for non-dimensional wavenumber K0 ¼ 1:0 and e ¼ 0:05 at different observation
points.
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In Fig. 6, plots of the real parts of #w and #c are shown for different wavenumber K0 ¼
0:5; 1:0; 1:5: Traveling wave profiles are calculated at a distance of #x ¼ 200; when the non-linear
parameter e ¼ 0:05: In this figure, the attenuation in #w is clearly seen and non-linearity has more
influence on the wave motion at high wavenumber and frequency. In Fig. 6(b), wave amplification
is observed in #c as the wavenumber increases. It is seen that the rotation is negligible at small

Fig. 4. Real and imaginary parts of #c for non-dimensional wavenumber K0 ¼ 1:0 and e ¼ 0:05 at different observation
points.
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wavenumbers. But as the wavenumber increases, the rotation is amplified and exhibits distinctly
different behavior in three time regions: short, intermediate, and long.
Fig. 7 shows the effect of geometric and material non-linearities separately on the wave

amplitude calculated at #x ¼ 200 for e ¼ 0:05: Geometric non-linearity shows large attenuation in
#c component, but negligible effect on the #w component. However, the combined effect of both has
significant influence on #c: There is an increase in amplitude at long time and it has different
characteristics at short, intermediate, and long times. In contrast, material non-linearity is seen to
attenuate the transverse displacement amplitude.

Fig. 5. Real parts of the amplitude components for different e calculated at #x ¼ 200 for non-dimensional wavenumber

K0 ¼ 1:0:
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4. Conclusions

Non-linear flexural waves in an elastic thin plate are modelled using Mindlin plate theory. The
non-linearity is modelled by considering non-linear Von Karman strains and by including
quadratic strains in the constitutive equation for the elastic material. An asymptotic solution is
obtained using the method of multiple scales, and an evolution equation, describing the amplitude
dependence on the slow time and space co-ordinates, is also derived and solved numerically.
Combined effects of geometric and material non-linearities have been studied. Results show that
the transverse displacement amplitude decreases with time, whereas the rotational component

Fig. 6. Real parts of #w and #c at different wavenumbers K0 calculated at #x ¼ 200 for e ¼ 0:05:
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shows an increase in amplitude. The latter also has distinctly different behaviors at short,
intermediate and long times.
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Fig. 7. Non-linearity effects on the real parts of #w and #c at K0 ¼ 1:5 calculated at #x ¼ 200 for e ¼ 0:05:
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